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Brandeis dice example is a toy example discussed by Jaynes to explain the maximum 

entropy principle. A die is tossed many times and an average number of spots is revealed.  

If other than 3.5, die is obviously not an honest one. Probabilities are then assigned for the 

next toss. This example is contested on the finite sampling grounds. The authors use 

Maximum Relative Entropy (MRE) in Jaynes’ Brandeis dice example to model traffic 

regimes (states) in a traffic flow.  A die-like hypercube (I-dice) is generated, and instead of 

the spots, unit kinetic energies are given on each and every face of the cube. The number of 

faces for this cube is the same as the number of states for the traffic flow of a given highway 

segment. The faces of the I-dice represent the congested, intermediate and free-flow 

regimes. Probability distributions are generated via maximum relative entropy principle, a 

modified version of the Jaynes’ MaxEnt principle. The prominent feature of this hypercube, 

which is called I-dice by the authors, is that it generates probabilities of the traffic states à 

la Boltzmann-Gibbs statistical mechanics. The probabilities for the states at each lane are 

computed via MRE. It is found that the probabilities do not match the observed frequencies. 

MRE imposes a more uniform distribution of probabilities for the speeds than the observed 

ones. As a result, for each state, the new speed classification is suggested by I-dice. The 

authors propose that I-dice may very well be used as a test-bed to check randomness in 

traffic flow. 

 

1. Introduction 

The increasing mobility in cities has led to the emergence of 

an immense number of research in traffic and transportation 

arena. A great variety of studies has been conducted in the 

literature. Some of the research topics and examples could 

be listed as delay studies at roundabouts [1, 2], performance 

evaluation of bus lines [3, 4], crash studies [5, 6], saturation 

flow rate [7, 8] and timing optimization [9, 10] at signalized 

intersections, vehicular platoon formation studies [11, 12], 

travel time studies [13, 14], identification of driver 

preferences [15, 16], city logistics [17, 18], and so on. Within 

such a vast number of topics, this study concentrates on 

modeling the vehicular traffic flow regimes concerning 

speeds over maximum relative entropy, covering Maxent 

principles’ shortcomings. Thus, let us briefly consider first 

the maximum entropy principle as follows. 

Jaynes’ Maximum Entropy (MaxEnt) principle is a 

statistical inference method specifying probabilities under 

partial or incomplete information. A Lagrangian is 

formulated over Boltzmann-Gibbs (BG) entropy and the 
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constraints. Jaynes had introduced the famous Brandeis dice 

example in his Brandeis lectures [19] to explain his MaxEnt 

principle. Later, BG entropy is replaced by relative entropy, 

and the method is called the MRE, the Maximum Relative 

Entropy [20-24]. MRE incorporates best of the both worlds: 

Bayesian inference and MaxEnt. But the discussions on 

MaxEnt and Bayesian are not new [25]. Williams [20] 

claimed that Bayesian conditioning is a case of MaxEnt 

inference. MaxEnt in its plain form could only process the 

testable information, the moments. The MRE, on the other 

hand, could process both data and moments.  

Maximum entropy methods have many applications in 

variety of disciplines such as ecology [26], econometrics 

[27], coastal engineering [28], transportation [29, 30] in the 

literature. Furthermore, some of the transportation literature 

using Bayesian inference can be given as follows. For 

example, Washington et al. [31] propose Bayesian 

Imputation Multinomial Logit model for imputing non-

chosen attribute values in the travel mode. The model 

embodies Bayes’ theorem, the multinomial logit choice 
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model and sampling based estimation. The model calibration 

provides a good match the observed choice behavior.  

Parry & Hazelton [32] implement a likelihood based 

model using a Bayesian statistical approach for a day-to-day 

dynamic traffic. The posterior samples are obtained by 

approximation through using Markov Chain Monte Carlo 

algorithms due to impossibility of direct calculation. 

Within the stochastic travel behavior study, Wei et al. 

[33] utilize Bayes’ theorem for obtaining conditional 

distribution of traffic flow where the traffic network is given 

in Stochastic User Equilibrium. To obtain the conditional 

distribution i.e. posterior distribution three steps are 

employed. At first, the probability of route choices is 

obtained by the random utility theory e.g. logit based models, 

then by Bayes’ theorem, the posterior distribution of route 

choices are derived, and lastly the authors find the posterior 

distribution of route flows. An inter-day stochastic traffic 

assignment problem was also probabilistically modeled in 

another study [34]. 

Fei et al. [35] develop online travel time prediction 

method for freeways. One of the main contributions of the 

method is that Bayesian dynamic linear model is considered 

in the context of different traffic conditions to provide more 

accurate and reliable results. The method is integrated into 

an adaptive control system. Another study involving travel 

time prediction on a highway also uses Bayesian model and 

it is important for ITS methodologies [36]. Feng et al. [37] 

use Bayesian approach to update the parameters of the travel 

time distribution of the given data. The study estimates the 

travel time distribution on their case study data set.  The 

posterior distributions are calculated via Bayesian updating 

process under varying conditions and iterative updating is 

conducted in the study. The posterior distributions of Bayes 

approach are also compared with estimations of expectation 

maximization algorithm and the results are discussed. 

Wang et al. [38] proposed a newly developed Bayesian 

combination method (BCM) and their numerical result 

explains the performance of the developed method by 

comparing with conventional BCM. The authors compare 

the traffic flow prediction performances of the methods and 

point out that the stability and the accuracy of the proposed 

method are better. 

Wei & Asakura [39] take Bayesian perspective into 

account to consider the congestion networks condition and 

the likelihood of the route choices. The authors put forward 

the idea that bi-level formulation or formerly proposed other 

methods in the literature cannot handle the congested 

networks. The study assumes that route traffic flows require 

stochastic user equilibrium principle and the study aims at 

estimating traffic flows in congested networks. Conditional 

probability of route flows is dealt with Bayesian approach. 

Another study [40] related with estimating seasonal traffic 

pattern is also representative for Bayesian analysis. The 

results of Bayesian and non-Bayesian methods for the 

collected data are also discussed in the study. 

Further, there are some examples presenting different 

traffic flow phases in literature.  Weber et al. [41] consider 

that traffic flow has two separate phases i.e. jam and free-

flow and the relationship between these phases is considered 

within the thermodynamically traffic liquid-gas transitions.  

In another study, Sopasakis [42] puts forward fully stochastic 

traffic flow model for single-lane on a highway section. The 

author deals with non-equilibrium behavior, and considers 

Arrhenius dynamics and categorizes the traffic phases as 

free-flow, synchronized traffic, wide moving jams, 

congested traffic based on records, and the obtained model 

is used to predict the phases correctly.  Kerner & Rehborn 

[43] focus on the three different kinds of traffic states i.e. free 

traffic flow, synchronized traffic flow and traffic jams, and 

explain their characteristics by experimental investigations. 

One of the empirical classifications of traffic states is 

specified by  [44]. Hofleitner et al. [44] perform Dynamic 

Bayesian Networks for arterial traffic estimation. By five 

minutes time discretization, the aim is to estimate travel-time 

distributions from sparse measurements. They also 

characterize traffic conditions for each link.  When 

characterizing the traffic, the authors consider binary traffic 

states i.e.  undersaturated and congested states to avoid large 

number of model parameters.  

Energy functions could be also found in some traffic flow 

studies in the literature. For example, Krbálek [45] considers 

N identical vehicles on a circle and describes the energy in 

the traffic system via Hamiltonian. The study involves 

velocity and its average in the Hamiltonian function. The 

author employs the distance between neighboring vehicles 

for the potential energy in the Hamiltonian. Likewise, the 

study [46] is also representative example of using energy 

functions in traffic flow. 

As mentioned earlier, in this paper, the authors aim to 

model the vehicular traffic flow regimes employing the 

celebrated toy example over MRE, covering the MaxEnt 

principles’ shortcomings and call the eventual die-like 

hypercube I-dice.  

The authors of this paper had obtained traffic regimes in  

[47] to examine the traffic flow behavior at the selected 

portion of Istanbul highway. Three-regimes of traffic flow 

i.e. congested, intermediate and free-flow regimes are 

discriminated with respect to the observed speed values. 

Here, the kinetic energies of each regime are found. In the 

light of those regime energies, the main purpose is to find the 

probabilities of the speed values observed on the highway. 

Finding the probability distributions of the regime speeds via 

entropy maximization is the main course of action for the 

statistical inference from the traffic data.  Then the new 

speed classification of the traffic regimes is proposed 

through I-dice model, processing both data and moments, 

unlike Brandeis dice which considers moments only. 

In this paper, the kinetic energies are expressed through 

average speed values, and utilized in I-dice problem. The 

interactions in traffic data could be long-range, and hence the 

traffic flow could involve non-Markovianity, 

(multi)fractality etc., as discussed e.g. in [48]. In this paper, 

the authors inquire about the state dependency in the traffic 

flow, and it is recommended that I-dice model would be a 

convenient tool to evaluate the randomness of a given traffic 

problem. The difference between the given speed 

classification [47] and the classification proposed by I-dice 

asserts that the traffic states are not independent, and the 

randomness is not in question. 
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2. Methodology 

2.1. Characteristics of the Data Obtained from the Selected 

Highway Segment 

The authors employed the vehicle speed data obtained 

from a traffic observation point at the selected segment of 

Istanbul highway. The observation point is adjacent to the 

large number of residential and commercial areas. The data 

represent only one direction flow at three lanes for 15 

consecutive days. The data were measured at two-minute 

intervals from 5.00 p.m. to 9.00 p.m. The measured data at 

each two-minute intervals correspond to the average values. 

The frequency curves of the data from the observation 

point at the selected highway segment (Figure 1, Figure 2, 

Figure 3) clearly emphasize bi-modality. All three graphs of 

the three lanes have two distinct peaks, a transition from one 

peak to the other, and a gradual increase from zero to the first 

peak.  

One may generate as many states as one wishes. But to 

make things a bit easier, three states are claimed to exist.  The 

authors, thus, introduce three traffic flow regimes i.e. 

congested, intermediate and free-flow from the experimental 

study on Istanbul highway. Three lanes are investigated 

using data recorded at two-minute intervals. For example, up 

to 45 km/h, slow and fast lanes designate congested regime, 

whereas middle lane is considered to be in the congested 

regime up to 50 km/h. Furthermore, between 45 km/h and 85 

km/h traffic flow is observed to be more stable and the 

intermediate regime occurs at the slow lane between these 

two limits. The speed values starting from above 85 km/h 

indicate the start of the free-flow regime for the slow lane. 

This regime begins at roughly 100 km/h on the middle and 

fast lanes, Table 6. 

 
Figure 1. Speed frequency distribution at slow-lane 

The authors incorporate Jaynes’ maximum entropy 

principle in this study à la Brandeis dice problem proposed 

by Jaynes, with only difference being MaxEnt is replaced by 

MRE. The authors propose a three-faced hypercube (Figure 

4), as many faces as the number of states, to implement the 

maximum entropy principle to the highway traffic flow. On 

the hypercube, each face is matched every aforementioned 

traffic regime.  
 

 
Figure 2. Speed frequency distribution at middle-lane 

 
Figure 3. Speed frequency distribution at fast-lane 

 

 
Figure 4. Illustration of I-dice for traffic regimes 

2.2. Maximum Entropy Principle and Brandeis Dice 

Problem 

Jaynes [49] explains the application of maximum entropy 

principle to statistical mechanics in a detailed way. 

Foundations of probability theory and notion of entropy is 

also well discussed in the study [50]. Furthermore, Uffink 

[51] points out that the maximum entropy principle is a 

particular method of statistical inference and it assigns 

numerical values to probabilities when certain partial or 

incomplete information is given. The method attains 

maximum (Shannon) entropy depending on probability 

distributions under the constraints of norm and mean energy. 



Kosun and Ozdemir - Comput. Res. Prog. Appl. Sci. Eng. Vol. 06(02), 76-83, June 2020 

79 

The constraints are the only available information in the 

maximum entropy principle. Maximum-entropy 

probabilities of energy levels are based on the celebrated 

Boltzmann-Gibbs statistical mechanics [49]. 

The uniform probability distribution, “the maximum 

ignorance”, maximizes the Shannon entropy since there is no 

information except the constraints. This closely resembles 

Laplace’s “principle of insufficient reason” as information is 

not enough to determine whether an event is more likely or 

not than any other. Thus, the events are equally likely to 

occur without additional information and this leads to the 

maximum entropy principle. Application of the MaxEnt to a 

die is known as Brandeis dice problem. Jaynes’ Brandeis 

dice example is a famous application of maximum entropy 

principle, where a die is tossed N times and the average 

number of spots up is detected. One might expect an 

expected value of 3.5 for an unloaded die for infinite N.  

According to maximum entropy principle, BG entropy is 

maximized using Lagrange multiplier technique subject to 

the norm and mean energy constraints.  

𝑆𝐵𝐺 = −𝑘∑𝑝𝑖
𝑖

ln⁡(𝑝𝑖) (1) 

where 𝑝𝑖 ⁡is the probability of finding any system in state 𝑖, 
𝑘 is constant.  These constraints are given as 

∑𝑝𝑖
𝑖

= 1 (2) 

∑𝑝𝑖
𝑖

𝜀𝑖 = 〈𝐸〉 (3) 

where 𝜀𝑖 ⁡is the energy of the state 𝑖, and 𝑝𝑖  is the probability 

of the state 𝑖, 〈𝐸〉 is the testable information, i.e. the expected 

energy. 

Now, the Lagrangian is obtained, which is to be derivated 

with respect to 𝑝𝑖   

𝐿(𝑝𝑖 , 𝜆, 𝛽) = −∑ 𝑝𝑖𝑖 ln(𝑝𝑖) − 𝜆(∑ 𝑝𝑖𝑖 − 1) −
𝛽(∑ 𝑝𝑖𝑖 𝜀𝑖 − 〈𝐸〉)  

(4) 

𝜕

𝜕𝑝𝑖
(−∑ 𝑝𝑖𝑖 ln(𝑝𝑖) − 𝜆(∑ 𝑝𝑖𝑖 − 1) − 𝛽(∑ 𝑝𝑖𝑖 𝜀𝑖 −

〈𝐸〉)) = 0  
(5) 

where 𝜆 and 𝛽 are the Lagrange multipliers. 

The canonical partition function is obtained below. It is 

employed to find the probabilities of states in a system. 

∑𝑒−𝛽𝜀𝑖

𝑖

= 𝑍 (6) 

where 𝛽 is the inverse temperature, 𝑍 is the partition 

function. 

As a result, the probability distribution of any state of the 

system is expressed by the canonical partition function in the 

following form 

𝑝𝑖 =
𝑒−𝛽𝜀𝑖

𝑍
 (7) 

Consider Brandeis dice problem in which an ordinary 

six-faced die is tossed a certain number of times. An average 

number of spots is computed from N trials. For an honest die, 

this average is 3.5. 

∑ 𝑝𝑖𝜀𝑖𝑖 = 3.5  (8) 

The expected value is given by the equation below 

〈𝐸〉 =
𝑒−𝛽+2𝑒−2𝛽+3𝑒−3𝛽+4𝑒−4𝛽+5𝑒−5𝛽+6𝑒−6𝛽

𝑒−𝛽+𝑒−2𝛽+𝑒−3𝛽+𝑒−4𝛽+𝑒−5𝛽+𝑒−6𝛽
  (9) 

Depending on this information, 𝛽 and 𝑍 values are 

calculated as 0 and 6, respectively. By substituting these 

values into the probability equation, the probability values 

assigned to each face are obtained as 1/6. Namely, any face 

could be expected with equal probability. 

2.3. Maximum Relative Entropy (MRE) 

The MaxEnt method by Jaynes was conceived to assign 

probabilities to events, as just mentioned above. A new 

revised technique, maximum relative entropy, MRE [24], 

could update the probabilities if required. This update is 

based on the constraints which could themselves be updated. 

Giffin [24] deals with maximum relative entropy (MRE) 

and shows how data and moment constraints are considered 

and processed in a given problem. Giffin [24] states that 

MRE method involves both Bayes rule and MaxEnt 

principles. To setup the MRE formulation, Bayes rule 

provides data constraints, whereas MaxEnt produces 

moment constraints. Two approaches i.e. simultaneous and 

sequential updating are discussed in the study. In both 

approaches, the application of the constraints is posed 

differently. By the nature of the MRE technique, a caveat is 

timely: The order of the constraints changes the outcome, 

hence they are not commutative. The order of the constraints 

is a problem when the constraints are processed sequentially, 

but not when processed simultaneously. 

So far, the nature of information has dictated what 

technique to follow: Data could be processed by Bayes’ rule, 

not the moment constraints. Vice versa is true for MaxEnt. 

MaxEnt could only process the moments.  MRE now 

combines both techniques and could work with data and 

moments. One of the major differences from the MaxEnt is 

that entropic form is replaced by the relative entropy as 

follows. 

The relative entropy is maximized on the joint posterior. 

The reference probability is the old joint prior. The 

constraints, 𝐶1 is the normalization constraint, whereas 𝐶2 

is the energy constraint. 

𝑆 = −∫𝑃(𝑦, 𝜃)𝑙𝑜𝑔
𝑃(𝑦,𝜃)

𝑃𝑜𝑙𝑑(𝑦,𝜃)
𝑑𝑦𝑑𝜃  (10) 

where 𝜃 = {𝜃1, 𝜃2, … . . 𝜃𝑖} are the probabilities, and 𝑦 =
{𝑦1, 𝑦2, … . . 𝑦𝑖} are the instances for ith-face of the cube to 

turn up in a total of n trials. 

Subject to 

𝐶1: ∫𝑃(𝑦, 𝜃) 𝑑𝑦𝑑𝜃 = 1   (11) 

And, 

𝐶2: ∫𝑃(𝑦, 𝜃) 𝑓(𝜃)𝑑𝑦𝑑𝜃 = 〈𝐸〉   (12) 

where 𝑓(𝜃) is the energy function of (𝜃).  
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Maximize the Lagrangian below 

𝐿 = −∫𝑃(𝑦, 𝜃)𝑙𝑜𝑔
𝑃(𝑦,𝜃)

𝑃𝑜𝑙𝑑(𝑦,𝜃)
−

𝛼[∫𝑃(𝑦, 𝜃) 𝑑𝑦𝑑𝜃 − 1] −
𝛽[∫ 𝑃(𝑦, 𝜃) 𝑓(𝜃)𝑑𝑦𝑑𝜃 − 〈𝐸〉]   

(13) 

where 𝛼 and 𝛽 are the Lagrange multipliers. 

To find 

𝑃(𝑦, 𝜃) = 𝑃𝑜𝑙𝑑(𝑦, 𝜃)
𝑒−𝛽𝑓(𝜃)

𝑍
   (14) 

Where, 

𝑃𝑜𝑙𝑑(𝑦, 𝜃) = 𝑃𝑜𝑙𝑑(𝜃)𝑃𝑜𝑙𝑑(𝑦|𝜃)   (15) 

And the likelihood is no other than 

𝑃(𝑦1, 𝑦2, … . . 𝑦𝑖|𝜃1, 𝜃2, … . . 𝜃𝑖) =
𝑛!

𝑦1!,𝑦2!….𝑦𝑖!
𝜃1
𝑦1𝜃2

𝑦2𝜃𝑖
𝑦𝑖   (16) 

That is the multinomial distribution, in a total of n trials. 

The partition function is  

𝑍 = ∫𝑃𝑜𝑙𝑑(𝜃) 𝑒
−𝛽𝑓(𝜃)𝑑𝜃   (17) 

𝜕 ln𝑍

𝜕(−𝛽)
= 〈𝐸〉   (18) 

Now the posterior distribution, given the moment is 

𝑃(𝜃|𝐶1, 𝐶2) = 𝑃𝑜𝑙𝑑(𝜃)
𝑒−𝛽𝑓(𝜃)

𝑍
   (19) 

Which concludes the problem of finding the posterior 

distribution, given the expected value. 

Should the data then be provided, 

𝑃(𝜃|𝐶1, 𝐶2, 𝐶3) = 𝑃𝑜𝑙𝑑(𝜃)𝑃(𝑦|𝜃)
𝑒−𝛽𝑓(𝜃)

𝑍′
   (20) 

where 𝐶3:⁡𝑃(𝑦) is the application of observation data and 𝑍′. 

𝑍′ = ∫𝑃𝑜𝑙𝑑(𝜃)𝑃(𝑦|𝜃) 𝑒
−𝛽𝑓(𝜃)𝑑𝜃    (21) 

Please note the difference between 𝑍 and 𝑍′. This is why 

the sequencing changes the eventual distributions. 

Before presenting the next section, the flowchart 

illustrating the steps undertaken in this study is briefly 

provided for the readers below (Figure 5). The results are 

discussed in the following section. 

Figure 5. Flowchart illustrating the steps 

3. Results and Discussion 

In this section, MRE is used in Jaynes’ Brandeis dice 

example to model traffic regimes in a traffic flow. Along a 

similar vein, a die-like hypercube is generated. Unit kinetic 

energies replace the spots on each and every face of the cube. 

Iyte is alma mater of one of the authors, and the initial of the 

university name inspires us to call this cube shortly I-dice. 

The number of the faces of this cube would be the same as 

the number of states for the traffic flow on a given highway 

segment in Istanbul. I-dice may have less or more than 6 

faces, by virtue of the number of the regimes, and it has 3 in 

this I-dice toy example. These regimes are the congested, 

intermediate and free-flow traffic conditions.  

In this part, the kinetic energies of the three traffic 

regimes are calculated.  The energy representation of the 

traffic flow system could be provided by a simple kinetic 

energy expression composed of average speeds of the states. 

The average speeds for different regimes for each lane are 

computed by the frequency count, Table 1. The histograms 

may be inspected at the Figures 1, 2 and 3. 

Table 1. Average Speeds For Each Lane (km/h) 

Regime              Slow Lane Middle Lane Fast Lane 

Congested           35.3 37.9 34.3 
Intermediate        65.4 71.5 69.2 
Free-Flow           87.6 102 106.9 

 

The kinetic energy per state is given per unit mass. The 

speeds are the measured average speeds of the states. 

𝐸𝑖 =
1

2
(𝑉𝑖)

2  (22) 

where 𝑉𝑖 is the average speeds of the states and 𝐸𝑖 is the 

energy of the ith-state. 

If the states of the energies are divided by 𝐸1 or the 

energy of the congested regimes of each lane, the following 

scaled energy form is obtained 

𝐸𝑠 =
𝐸𝑖
𝐸1

 (23) 

where 𝐸𝑠 is the scaled energy. 

And tabulated in Table 2. 

Table 2. Scaled Energies For Each Lane, Es 

Regime              Slow Lane Middle Lane Fast Lane 

Congested           1 1 1 
Intermediate        3.43 3.56 4.07 
Free-Flow           6.16 7.25 9.18 

 

The traffic regimes could be visualized on I-dice as 

illustrated in Figure 4. Table 3 is composed by again 

frequency count and individual values are found out of the 

total vehicle passed within the two-minute intervals during 

the specified hours of 15 consecutive days. For example, for 

the slow lane and congested regime, 16 % of the vehicles 

belonged to this interval, i.e. less than 45 km/h.  

Table 3. Observed Probabilities For Each Lane 

Regime              Slow Lane Middle Lane Fast Lane 

Congested           0.16 0.21 0.146 
Intermediate        0.785 0.758 0.69 
Free-Flow           0.055 0.032 0.164 

Interpretation of the Traffic States Based on Each Lane

New Speed Classification Suggested by I-Dice

Comparison of the Observed Frequencies and Computed Probabilities

Computed Probabilities of the States via MRE

MaxEnt and MRE Formulation Framework

Obtaining Vehicle Speed Data for the Analysis

Literature Review, Problem Definition & Establishing Research Objectives
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Table 4 is formed using the formula 

∑ 𝑝𝑖𝐸𝑠 =𝑖 〈𝐸〉  (24) 

Table 4. Average Energy For Each Lane, 〈𝐸〉 
      Slow Lane Middle Lane Fast Lane 

Average Energy          3.19 3.14 4.46 

 

where Tables 2 and 3 are made use of.  

As expected, the slow lane has a lower expected energy 

compared to the fast lane, though the middle lane is open for 

discussion. Table 5 is computed by MRE formulation 

framework given in Section 2.3. Here, beta values are 

calculated first, then partition functions could be found out. 

Probabilities are computed via these partition functions for 

the lanes. Table 6 lists the state characterization, which was 

performed earlier [47]. 

Table 5. Computed  Probabilities For Each Lane via MRE 

Regime              Slow Lane Middle Lane Fast Lane 

Congested 0.3997 0.4618 0.6226 

Intermediate 0.3315 0.3319 0.2934 

Free-Flow 0.2688 0.2063 0.0839 

𝛽 0.077 0.129 0.245 

𝑍 0.772 0.634 0.4190 

 

Table 6. Current Speed Classification For Each State (km/h) 

Regime              Slow Lane Middle Lane Fast Lane 

Congested           < 45 < 50 < 45 
Intermediate        45-85 50-100 45-100 
Free-Flow           > 85 > 100 >100 

 

Please contrast Table 3 to Table 5 in that the observed 

frequencies did not match the computed probabilities for the 

states. For the MRE technique to work, one only needs 

Tables 2 and 4. The reasons behind this mismatch could be 

argued between Tables 3 and 5. What the authors believe is 

that I-dice formulation of the traffic states suggests a new 

classification of the speed regimes based on Table 7, in stark 

contrast to the earlier regime classification provided on 

Table 6. If the researchers like to determine the classification 

of regimes based on their representative speed ranges, MRE 

technique could compute the probabilities, and by working 

backwards, the energies of each state may be specified. The 

observed data in our case did not reflect Boltzmann-Gibbsian 

tendencies, in that energies of the states are not inversely 

proportional to their probabilities. If the states are organized 

based on Table 7, the new distribution now follows a BG 

statistics inserted in MRE. MRE imposes a more uniform 

distribution of probabilities for the speeds than the observed 

ones, Tables 3 and 5. 

Table 7. Speed Classification Suggested by I-dice For Each State 

(km/h) 

Regime              Slow Lane Middle Lane Fast Lane 

Congested           < 60 < 62 < 72 
Intermediate        60-80 62-90 72-107 
Free-Flow           > 80 > 90 > 107 

4. Conclusions 

Modelling traffic states à la Brandeis dice and calling it 

I-dice is proposed in this study. Jaynes’s toy example, 

Brandeis dice example, has generated a controversy despite 

its simplicity. The motive behind the critics was that even 

though Brandeis dice example has shown the inner workings 

of MaxEnt principle, the use of frequency count for 

probability is simply not a well-posed problem. In this 

respect, I-dice example could also be based on the same 

grounds, but we aware the fact that we only tried to adapt 

MRE principle into our toy example.  One may see a 

comparison of the techniques, and other constructive 

arguments in [51].  

Here, the celebrated Brandeis dice problem using MRE 

is now converted into I-dice model in a traffic flow setting. 

This model could take advantage of data as well as moments. 

I-dice example is mainly proposed to model the traffic states 

on a hyper-dimensional cube. A three-lane and three-state 

example was given from a highway segment. All the 

frequency counts, average speeds and expected energies are 

computed and tabulated. Before getting started, (the 

observed) probabilities of the states were already known. 

Expected energies were generated for each lane.  

The following inferences are drawn from this study: 

• Processing the moments through MRE technique, it is 

seen that the computed probabilities are different from 

the observed ones. This has shown that if the 

classification of the states is done, as the authors have 

done using Langevin analysis [47], then the probabilities 

did not follow an inverse relationship with energies as is 

the case with Boltzmann-Gibbs thermostatistics.  

• This is to say that with the current characterization of the 

regimes, BG statistics is not applicable with the selected 

highway portion. But the authors wished to find out what 

would be the new classification of the states so that they 

now follow BG theory embedded in MRE.  

• Based on this framework, the state characterization for 

each lane is obtained. In other words, the speed 

classification suggested by I-dice for each state is 

consistent with MRE findings.   

• One now may use I-dice method to classify the traffic 

states in terms of speeds once their probabilities are 

found out, and determine the randomness and 

Markovianity in the state classification.  

• The histograms for each lane could also depict the non-

Gaussianity of the speed values, hence would involve 

long-range correlations and non-Markovianity. This is 

quantitatively verified over a mismatch of the speed 

classifications in this study.  
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